Author:
Wanting Zhou Wanting Zhou,Wanting Zhou Man Li,Man Li Lei Li,Lei Li Kuo-Hui Yeh
Abstract
<p>The incidence of high-energy particles into the semiconductor device would induce single event transients (SETs), which is a main threaten to MOS device. And the incidence distances and Linear Energy Transfers (LETs) have important effects on the SET current. A machine learning method based on Whale Optimization Algorithm-Back Propagation neural network (WOA-BPNN) model considering injection distances and LETs has been proposed to predict SET current in this paper. And this method could effectively reduce the simulation time from hours to seconds compared to device model. The current data that predicted by this method has been compared with the Technology Computer Aided Design (TCAD) simulation result which obtained in the background of the 40 nm process technology, the regression coefficient between the predicted value based on the proposed method and the TCAD simulation result was 99.76%, and the maximum integral relative error was 0.287% while the minimum integral relative error is 0.04%. Besides, the proposed method is also compared with PSO-BPNN (Particle Swarm Optimization, PSO) and GA-BPNN (Genetic Algorithm, GA), and the results demonstrated that the WOA-BPNN has prediction accuracy and timing saving advantages over the other two methods.</p>
<p> </p>
Publisher
Angle Publishing Co., Ltd.
Subject
Computer Networks and Communications,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献