IDHUP: Incremental Discovery of High Utility Pattern

Author:

Lele Yu Lele Yu,Lele Yu Wensheng Gan,Wensheng Gan Zhixiong Chen,Zhixiong Chen Yining Liu

Abstract

<p>As a sub-problem of pattern discovery, utility-oriented pattern mining has recently emerged as a focus of researchers&rsquo; attention and offers broad application prospects. Considering the dynamic characteristics of the input databases, incremental utility mining methods have been proposed, aiming to discover implicit information/ patterns whose importance/utility is not less than a user-specified threshold from incremental databases. However, due to the explosive growth of the search space, most existing methods perform unsatisfactorily under the low utility threshold, so there is still room for improvement in terms of running efficiency and pruning capacity. Motivated by this, we provide an effective and efficient method called IDHUP by designing an indexed partitioned utility list structure and employing four pruning strategies. With the proposed data structure, IDHUP can not only dynamically update the utility values of patterns but also avoid visiting non-occurred patterns. Moreover, to further exclude ineligible patterns and avoid unnecessary exploration, we put forward the remaining utility reducing strategy and three other revised pruning strategies. Experiments on various datasets demonstrated that the designed IDHUP algorithm has the best performance in terms of running time compared to state-of-the-art algorithms.</p> <p>&nbsp;</p>

Publisher

Angle Publishing Co., Ltd.

Subject

Computer Networks and Communications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using Tree Structures for Maintenance of High Fuzzy Utility Itemsets;The Review of Socionetwork Strategies;2024-08-21

2. A residual utility-based concept for high-utility itemset mining;Knowledge and Information Systems;2023-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3