Efficient Fuzzy C-means Based Reduced Feature Set Association Rule Mining Approach for Predicting the User Behavioral Pattern in Web Usage Mining

Author:

J. Serin J. Serin,J. Serin J. SatheeshKumar,J. SatheeshKumar T. Amudha

Abstract

<p>Online business and marketing are becoming popular now a day due to the wide variety of products available from multiple vendors in online. One of the major challenges of e-business merchants is predicting the buying and selling patterns of online customers. Global level competition is another challenge faced by online merchants due to the lowest prices and offers provided by multiple sellers for the same or similar product. Hence, the development of an efficient web mining framework to analyze and predict buyer&rsquo;s interest based on the browsing history will be a great support to the online sellers by providing exact or relevant product details to the buyers in online. Association rule mining plays an essential role in Web Mining for finding the most frequent and predictive patterns of the user. The major challenge in this approach is the generation of many rules for a huge volume of datasets. Decision making based on association rule mining is critical because knowledge is not directly present in frequent patterns. This research work focuses on the analysis of standard web mining approaches such as k-means clustering, fuzzy c-means clustering, fuzzy k-medoids clustering and fuzzy clustering with weighted session page matrix approach. In this work, MSNBC dataset from UCI Machine Learning Repository has been taken for analysis. Dimensionality reduction plays an important role in the accurate classification of users with respect to their interests. This research work proposed fuzzy C-Means using Kernel Principal Component Analysis (k-PCA) as a dimensionality reduction method based association rule mining classification, grouping and pattern prediction with 100% &ldquo;confidence&rdquo; along with a &ldquo;lift&rdquo; value greater than 1. The &ldquo;support&rdquo; value also shows higher compare with other existing methods and features are effectively reduced in the proposed architecture.</p> <p>&nbsp;</p>

Publisher

Angle Publishing Co., Ltd.

Subject

Computer Networks and Communications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3