PSO-VFA: A Hybrid Intelligent Algorithm for Coverage Optimization of UAV-Mounted Base Stations

Author:

Xuefeng Chen Xuefeng Chen,Xuefeng Chen Wan Tang,Wan Tang Ximin Yang,Ximin Yang Lingyun Zhou,Lingyun Zhou Liuhuan Li

Abstract

<p>When the number of outdoor wireless users surges and fixed base stations (BSs) can hardly accommodate high-load communication traffic, unmanned aerial vehicles (UAVs) carrying BSs can provide wireless communication services, and the location deployment of the UAV-mounted BSs directly influences the reliability of network communications. For the target area scenario where the UAVs uniformly cover user nodes, we propose a hybrid intelligent coverage algorithm called PSO-VFA to optimize the coverage of a fixed number of UAV-BSs. The PSO-VFA algorithm consists of two phases employing different intelligent algorithms. First, we adopt a particle swarm optimization (PSO) method for a global search of the coverage areas. Then, for local search, a virtual-repulsive-force-based firefly algorithm (VFA) is proposed in this paper to maximize the user coverage. In the VFA algorithm, the users are treated as the objects attracting the UAVs, and the virtual repulsive force is used for UAV location adjustment. Simulation results show that the proposed PSO-VFA hybrid algorithm has faster convergence and significantly increases the communication coverage of UAV-mounted BSs compared with individual intelligent algorithms such as VFA, PSO, genetic algorithm (GA), and simulated annealing (SA).</p> <p>&nbsp;</p>

Publisher

Angle Publishing Co., Ltd.

Subject

Computer Networks and Communications,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3