Research on Path Planning Strategy of Rescue Robot Based on Reinforcement Learning

Author:

Ying-Ming Shi Ying-Ming Shi,Ying-Ming Shi Zhiyuan Zhang

Abstract

<p>How rescue robots reach their destinations quickly and efficiently has become a hot research topic in recent years. Aiming at the complex unstructured environment faced by rescue robots, this paper proposes an artificial potential field algorithm based on reinforcement learning. Firstly, use the traditional artificial potential field method to perform basic path planning for the robot. Secondly, in order to solve the local minimum problem in planning and improve the robot’s adaptive ability, the reinforcement learning algorithm is run by fixing preset parameters on the simulation platform. After intensive training, the robot continuously improves the decision-making ability of crossing typical concave obstacles. Finally, through simulation experiments, it is concluded that the rescue robot can combine the artificial potential field method and reinforcement learning to improve the ability to adapt to the environment, and can reach the destination with the optimal route.</p> <p>&nbsp;</p>

Publisher

Angle Publishing Co., Ltd.

Subject

General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3