Representasi Matriks untuk Proses Crossover Pada Algoritma Genetika untuk Optimasi Travelling Salesman Problem

Author:

Fadhillah Ismi,Permanasari Yurika,Harahap Erwin

Abstract

Abstrak. Travelling Salesman Problem (TSP) merupakan salah satu permasalahan optimasi kombinatorial yang biasa terjadi dalam kehidupan sehari-hari. Permasalahan TSP yaitu mengenai seseorang yang harus mengunjungi semua kota tepat satu kali dan kembali ke kota awal dengan jarak tempuh minimal. TSP dapat diselesaikan dengan menggunakan metode Algoritma Genetika. Dalam Algoritma Genetika, representasi matriks merupakan representasi kromosom yang menunjukan sebuah perjalanan. Jika dalam perjalanan tersebut melewati n kota maka akan dibentuk matriks n x n. Matriks elemen Mij dengan baris i dan kolom j dimana entry M(i,j) akan bernilai 1 jika dan hanya jika kota i dikunjungi sebelum kota j dalam satu perjalanan tersebut, selain itu M(i,j)=0. Crossover adalah mekanisme yang dimiliki algoritma genetika dengan menggabungkan dua kromosom sehingga menghasilkan anak kromosom yang mewarisi ciri-ciri dasar dari parent. Algoritma Genetika selain melibatkan populasi awal dalam proses optimasi juga membangkitkan populasi baru melalui proses crossover, sehingga dapat memberikan daftar variabel yang optimal bukan hanya solusi tunggal. Dari hasil proses crossover dalam contoh kasus TSP melewati 6 kota, terdapat 2 kromosom anak terbaik dengan nilai finess yang sama yaitu 0.014. Algoritma Genetika dapat berhenti pada generasi II karena berturut-turut mendapat nilai fitness tertinggi yang tidak berubahKata kunci : Travelling Salesman Program (TSP), Algoritma Genetika, Representasi Matriks, Proses Crossover Abstract. Travelling Salesman Problem (TSP) is one of combinatorial optimization problems in everyday life. TSP is about someone who had to visit all the cities exactly once and return to the initial city with minimal distances. TSP can be solved using Genetic Algorithms. In a Genetic Algorithm, a matrix representation represents chromosomes which indicates a journey. If in the course of the past n number of city will set up a matrix n x n. The matrix element Mij with row i and column j where entry M (i, j) will be equal to 1 if and only if the city i before the city j visited in one trip. In addition to the M (i, j) = 0. Crossover is a mechanism that is owned by the Genetic Algorithm to combine the two chromosomes to produce offspring inherited basic characteristics of the parent. Genetic Algorithms in addition to involve the population early in the optimization process will also generate new populations through the crossover process, so as to provide optimal number of variables is not just a single solution. From the results of the crossover process in the case of TSP passing through six cities, there are two the best offspring with the same finess value which is 0.014. Genetic Algorithms can be stopped on the second generation due to successive received the highest fitness value unchanged.Keywords: Travelling Salesman Program (TSP), Genetic Algorithm, Matrix Representation, Crossover Process

Publisher

Universitas Islam Bandung (Unisba)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3