Numerical Study of Erosion Wear Characteristics in a High-pressure Black Water Angle Valve by Using CFD-VOF-DPM Method

Author:

Abstract

High-pressure black water angle valves are essential equipment of black water flash treatment systems in the coal gasification process, and they usually suffer from a high risk of erosion wear failure. In this study, computational fluid dynamics (CFD), combined with the discrete particle method (DPM) and the volume of fluid (VOF) method, was used to study the flow characteristics and erosion wear phenomenon in high-pressure black water angle valves under different valve cavity radii and opening angles. In particular, a new parameter, the drift index, was introduced to analyze the bias flow phenomenon in the throttling zone. With the increase in valve cavity radius, the drift index first decreases and then increases, and the influence of the valve cavity radius gradually weakens with the increase in the valve opening. It was found that, with the increase in valve cavity radius, the average erosion wear rate of the valve body decreases first and then increases. When the valve cavity radius was 132 mm, the average erosion wear rate of the valve body was the smallest. Therefore, the optimization of the valve cavity radius selection value can reduce the erosion wear damage of the high-pressure black water angle valve and increase its operational dependability.

Publisher

Academic World Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3