Upwind Scheme Using Preconditioned Artificial Dissipation for Unsteady Gas-liquid Two-phase Flow and Its Application to Shock Tube Flow

Author:

Abstract

A stable upwind finite-difference method for unsteady gas-liquid two-phase flows is proposed and applied to shock tube flows. The artificial dissipation terms in the flux difference splitting upwinding scheme are derived using a preconditioned matrix to enhance the stability and convergence of the numerical calculation of mixed compressible and incompressible flows with arbitrary void fractions. A homogeneous gas-liquid two-phase flow model is used. A stable four-stage Runge-Kutta method and the flux difference splitting upwind scheme combined with a third-order MUSCL TVD scheme are employed. Using the proposed method, we compute gas-liquid mixture shock tube problems and compare their results with the exact solution to check the reliability of the proposed method. Shock and expansion wave propagations through the gas-liquid two-phase media are observed in detail. The effect of the preconditioned artificial dissipation on the numerical stability and convergence rate are investigated. We confirm that the proposed method is stable and effective for computations of unsteady two-phase complex flows with arbitrary Mach numbers.

Publisher

Academic World Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3