Hydrodynamic Performance of Cycloidal Propellers with Four-Bar and Mixed Four-bar/Five-bar Mechanisms: A Numerical Study

Author:

Abstract

Cycloidal propellers constitute a specialized category of underwater propulsion devices, widely employed in vehicles requiring exceptional maneuverability. The parameters of the blade-driving mechanism directly impact the propeller performance. Hence, the effect of variations in the geometric parameters of the blade-driving mechanism on the hydrodynamic performance of cycloidal propellers must be investigated. In this study, a specific set of four-bar and mixed four-bar/five-bar mechanisms are taken as examples, and the effect of linkage-length variations on the hydrodynamic performance of cycloidal propellers was analyzed using numerical simulation methods. First, we established a physical model of the cycloidal propeller, and then derived the relationship between blade-rotation and revolution angles. Subsequently, by solving the Navier–Stokes equations and employing computational fluid dynamics simulations based on viscosity, an analysis is conducted to reveal the trends in the impact of different linkage-length combinations on the hydrodynamic performance of the cycloidal propeller. Finally, the outcomes of the numerical simulations are interpreted using the wing element theory. In similar blade-driving mechanisms, the effects of varying linkage lengths on propeller hydrodynamic performance are determined through alterations in the blade rotation angle range and equilibrium position. An increase in the range of the blade-rotation angle significantly enhances the hydrodynamic performance of the cycloidal propeller. This research employs a more realistic auto-propulsion mode for numerical simulations, establishing a mapping relationship between the blade-driving mechanism and hydrodynamic performance of the cycloidal propeller, while analyzing the underlying influencing mechanisms. Furthermore, crucial numerical simulations and theoretical foundations are employed for designing the four-bar and mixed four-bar/five-bar mechanism cycloidal propellers. The findings of this study could also be used in similar cycloidal propellers with multilinkage mechanism.

Publisher

Academic World Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3