A General Scaling Law of Vascular Tree: Optimal Principle of Bifurcations in Pulsatile Flow

Author:

Abstract

Murray’s law, as the best-known optimal relationship between bifurcation calibers, is obtained based on the assumption of steady-state Poiseuille blood flow and is mostly accurate in small vessels. In middle sized and large vessels such as the aorta and coronary arteries, the pulsatile nature of the flow is dominant and deviations from Murray law have been observed. In the present study, a general scaling law is proposed, which describes the optimum relationship between the characteristics of bifurcations and pulsatile flow. This scaling law takes into account the deviations from Murray law in large vessels, and proposes optimal flow (i.e. less flow resistance) for the full range of the vascular system, from the small vessels to large ones such aorta. As a general scaling law, it covers both symmetrical and asymmetrical bifurcations. One of the merits of this scaling law is that bifurcation characteristics solely depend on the Womersley number of parent vessels. The diameter ratios suggested by this scaling law are in acceptable agreement with available clinical morphometric data such as those reported for coronary arteries and aortoiliac bifurcations. A numerical simulation of pulsatile flow for several Womersley numbers in bifurcation models according to the proposed scaling law and Murray law has been performed, which suggests that the general scaling law provides less flow resistance and more efficiency than Murray law in pulsatile flow.

Publisher

Academic World Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3