Numerical Study and Parameter Optimization of a Dual-jet Based Large Particle Collection System for Deep-sea Mining

Author:

Abstract

A dual-jet collecting device is highly efficient at picking up small-sized polymetallic nodules; however, its performance is not as effective for large nodules in deep-sea mining. To address this problem, numerical simulations have been conducted to thoroughly investigate the flow characteristics and particle motions during the collection of larger nodules. The collection performance of the enhanced device is analyzed across varying front jet velocities (Vf), suction pressures (Pout), and nozzle heights (h/d). The results reveal that increasing Vf improves the drag force and particle velocity in the jet impingement and upwelling zones, facilitating nodule lifting movement and transport. However, increasing Pout reduces the drag forces in these zones while increasing the particle velocity in the upwelling zone. A large Pout is not conducive to nodule initiation but has benefits for transport. Increasing h/d reduces the drag force in the anti-gravity direction in the jet impingement zone. The improved collecting device attains a pick-up efficiency that exceeds 80% for large-sized nodules when h/d < 1.3. The pick-up efficiency with suction pressure, which remains 40%, is higher than that without suction pressure when h/d > 1.3. The research findings may shed light on the design of more efficient dual-jet collection systems.

Publisher

Academic World Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3