A Data-Driven Machine Learning Approach for Turbulent Flow Field Prediction Based on Direct Computational Fluid Dynamics Database

Author:

Abstract

A novel approach is presented for predicting compressible turbulent flow fields using a neural network-based data-driven method. Accurate prediction in turbulent regions heavily relies on the resolution of available data. Traditional methods, employing image-based techniques by mapping scattered computational fluid dynamics (CFD) data onto Cartesian grids, encounter data scarcity in critical areas such as the boundary layer and wake. Recently, convolutional neural networks (CNN) have gained prominence as the most widely referenced technique in fluid dynamics, utilizing flow field images as datasets for flow field prediction. However, CNN requires datasets with a high pixel density to enhance training accuracy in crucial regions, thereby increasing the input data volume and machine training time. To address this challenge, our proposed method deviates from using flow field images and instead generates datasets directly from the flow field properties of CFD grid points. By employing this approach, several advantages are realized. Firstly, the network benefits from the favorable characteristics of unstructured grids, such as varying point spacing near the object surface and in the far field, which effectively reduces the amount of input data and consequently the machine training cost. Secondly, the construction of the training dataset eliminates the need for interpolation or extrapolation, thereby preserving the accuracy of CFD data. In this case, a simple multilayer perceptron can be trained using the proposed dataset. Various flow field properties, including static pressure, turbulent kinetic energy, and velocity components, can be predicted with high accuracy within a few seconds.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3