Characteristics of Olive Oil Droplet Combustion with Various Temperatures and Directions of Magnetic Fields in the Combustion Chamber

Author:

Abstract

This study examines the effects of temperatures and directions of the magnetic fields in the combustion chambers on flame characteristics for boiler combustion in power generation systems by burning olive oil droplets. The variations in the temperature of the combustion chamber are 40°C, 50°C, and 60°C. Meanwhile, the directions of the magnetic fields are the repulsive magnetic field (north-north) and the attractive magnetic field (north-south). In the experiment, a droplet of olive oil was placed at a type K thermocouple junction between the two bar magnets. A 250 fps high-speed camera recorded the flame from its ignition to its extinction. The results of this study found that temperature and direction of the magnetic fields in the combustion chamber have an effect on the characteristics of the flame, where the attractive magnetic field (north-south) resulted in increased burning of droplets, round flame, low altitude, increased temperature, and shorter ignition delay time, compared to the repulsive magnetic field (north-north) and without a magnetic field. Furthermore, the combustion chamber temperatures of 40°C, 50°C, and 60°C produced flame temperatures of 799.94°C, 829.25°C, and 879.50°C, and flame heights of 5.97 mm, 5.35 mm, and 4.23 mm, respectively. The strong magnetic fields increased the concentration of oxygen and fuel molecules around the combustion reaction zone, causing shorter droplet combustion and releasing a large amount of energy. These findings are beneficial for designing efficient industrial heat generators with a magnetic field. The results of this study are therefore crucial as a basis for considering the substitution of fossil fuels with environmentally friendly vegetable oils.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3