Influence of Bionic Waveform Leading Edge Blade on Drag Reduction Characteristics of Mixed Pump

Author:

Abstract

Because the helical axial flow gas-liquid mixing pump has the great advantage of conveying gas-liquid two-phase mixed medium, it has become the main core equipment for deep-sea oil and natural gas exploitation. The gas phase aggregation and bubble movement trajectory in the impeller channel have been widely studied, but the increase of medium flow resistance caused by flow separation has not been deeply discussed. Combined with the Euler multiphase flow model and the SST k-ω turbulence model, the numerical calculation of the helical axial flow gas-liquid mixed pump is carried out. Under design flow conditions Q = 100 m3/h, head H = 30 m, speed n = 4500 r/min, specific speed ns =213.6 r/min, and under different inlet gas content conditions, the influence of the bionic waveform leading edge blade on drag reduction characteristics of the helical axial flow gas-liquid mixed pump was investigated. By designing the blade with a leading-edge structure with different heights and pitches, the separation of the mixed medium and the suction surface is effectively suppressed, and the flow resistance of the medium in the 1/10 area of the inlet end of the blade is reduced. The results show that when the height A is 0.25%L and the pitch λ is 12.5%h, the maximum drag reduction rate in this region is 52.6%, the maximum increase in efficiency of the mixed pump is 2.2%, and the maximum increase in head is 4.8%. This study can provide technical support for flow drag reduction in gas-liquid mixed pump.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3