Experimental Study on a Generic Side-View Mirror with Slotted Cylindrical Foot

Author:

Fu W.,Li Y.

Abstract

A simple model consisting of a mirror-housing and its cylindrical foot is applied to represent the automobile side-view mirror that causes unwanted aerodynamic noise and wind drag during high-speed driving. An additional slot is made on the solid foot to modify the flow around the mirror and thus reduce the side wall pressure fluctuation and aerodynamic drag. Flow fields and wall pressure fluctuations of these side-view mirror models have been investigated experimentally in a wind tunnel. The airflow rate through the slot varies with the changing of the slot area. Wall surface pressure sensors, particle image velocimetry (PIV), and six-component balance were applied to measure the acoustic and flow characteristics. The results demonstrated that, with the increase of slot airflow rate to 30%, the side wall pressure fluctuations were reduced by 5.1 dB and the drag coefficient decreased by 10.2%. The PIV measurements showed that the vortex cluster center behind the mirror was moved upward from the wall surface due to the slot airflow injection into the wake. The turbulent kinetic energy in the side-view mirror wake near the wall decreased with the increment of the airflow rate, reducing the side wall pressure fluctuations and thereby suppressing the noise generation.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3