Two Dimensional Vortex Shedding from a Rotating Cluster of Cylinders

Author:

Abstract

The dynamics of two-dimensional vortex shedding from a rotating cluster of three cylinders was investigated using Computational Fluid Dynamics (CFD) and Dynamic Mode Decomposition (DMD). The cluster was formed from three circles with equal diameters in mutual contact and allowed to rotate about an axis passing through the cluster centroid. While immersed in an incompressible fluid with Reynolds number of 100, the cluster was allowed to rotate at non-dimensionalised rotation rates (Ω) between 0 and 1. The rotation rates were non-dimensionalised using the free-stream velocity and the cluster characteristic diameter, the latter being equal to the diameter of the circle circumscribing the cluster. CFD simulations were performed using StarCCM+. Dynamic Mode Decomposition based on the two-dimensional vorticity field was used to decompose the field into its fundamental mode-shapes. It was then possible to relate the mode-shapes to lift and drag. Transverse and longitudinal mode-shapes corresponded to lift and drag, respectively. Lift–drag polars showed a more complex pattern dependent on Ω in which the flow fields could be classified into three regimes: Ω less than 0.3, greater than 0.5, and between 0.3 and 0.5. In general, the polars formed open curves in contrast to those of static cylinders, which were closed. However, some cases, such as Ω = 0.01, 0.22, and 0.28, formed closed curves. Whether a lift-drag polar was closed or open was deduced to be determined by the ratio of Strouhal numbers calculated using lift and drag time series, with closed curves forming when the ratio is an integer.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3