Influence of Intake Valve Structure Combined with Valve Lift Dissimilitude on Intake Performance of Diesel Engine

Author:

Abstract

For diesel engines equipped with a combined spiral/tangential inlet, the main object of the valve structure and valve lift dissimilitude strategies is the valve, the changes of both will alter the motion state of the in-cylinder airflow, which has an important impact on the formation and combustion of the mixture. In order to investigate the flow performance of valve structure and valve lift dissimilitude, this paper used computational fluid dynamics (CFD) numerical simulation and multi-parameter regression methods to optimize the dual intake valve structure and obtained three valve structures with better intake performance first. Then, the optimized intake valve structure models were combined with the valve lift dissimilitude schemes to conduct steady-flow tests for the intake port. Through the reasonable combining of the two, the intake performance of the original engine was further improved. The results show that the valve structure has a relatively small influence on the intake mass, while it has a greater effect on the formation of the swirl in the cylinder, increasing the swirl ratio by 8.0%. The optimized valve structure model was combined with the valve lift dissimilitude scheme. It was found that the valve structure with optimal intake mass combined with the dissimilitude scheme of the largest valve lift of the spiral inlet could increase the flow coefficient by a maximum of 1.9%. The valve structure of the optimal swirl ratio combined with the dissimilitude scheme of the largest valve lift of the tangential inlet could increase the swirl ratio by a maximum of 9.7%. This study can guide diesel engines with combined intakes to increase the intake mass and improve the intake performance.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3