Numerical Simulation of Underwater Supersonic Jet of Vehicle with Shell-Shaped Flow Control Structure

Author:

Abstract

When the underwater vehicle engine operates under the condition of over-expansion, the violent pulsation of the flow field pressure at the rear of the nozzle can cause violent fluctuations in engine thrust, leading to engine instability. In order to improve the engine's stability, this study drew inspiration from the wave attenuation characteristics of the shell-shaped surface texture structure and added a multi-layer shell-shaped texture structure to the rear wall to reduce pressure fluctuations in the flow field at the rear of the nozzle . Based on the numerical simulation method, the effects of different bionic shell-shaped structures on jet morphology, wall pressure and engine thrust were compared and analyzed. The results show that the multi-layer bionic shell-shaped texture structure can effectively inhibit the occurrence of periodic phenomena such as bulge, necking, and return stroke in the rear flow field, so as to effectively reduce the pressure fluctuation in the rear flow field of the nozzle. In addition, when the momentum thrust is almost unchanged, it is found through calculations that during the initial stage of the jet, the suppression of thrust is not significant. After 0.005 seconds, the oscillation amplitude of the combined force of pressure difference thrust and back pressure thrust decreased by 22%, and the oscillation amplitude of the total thrust decreased by 20%.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3