Experimental and Numerical Investigation of the Control of the Flow Structure on Surface Modified Airfoils

Author:

Abstract

In this study, experimental and numerical flow analysis was performed on three different blade profiles with a chord length of 165 mm using passive flow control method. The first of the airfoil is the standard NACA 0018 profile. The second airfoil type has a NACA 0018 profile with a gap in the suction surface. The last airfoil is the NACA 0018 profile which is 66% of the trailing edge cut from the chord length. All airfoil profiles were analyzed at the Reynolds number, Re=2x104, and angles of attack α=0o, 5o, 10o, 12o and 14o in both experiment and numerical studies. The experiments were carried out using the Particle Image Velocimetry (PIV) method in a closed-loop open water channel, and the time-averaged velocity vectors, streamlines, and vorticity contours of the flow field were obtained. Subsequently, numerical analyses were performed using the ANSYS Fluent package program, one of the Computational Fluid Dynamics (CFD) programs used frequently in the literature. The streamlines and pressure contours of the airfoil profiles have been compared visually at the same Re and different angles of attack. In addition, according to the angle of attack of the airfoil profiles, lift coefficient CL, drag coefficient CD, and the ratio of lift coefficient to drag coefficient CL/CD graphs were presented. It has been shown that the gap on the airfoil at high attack angles caused changes in lift (up to 0.7) and drag (up to 0.15). These features can allow these models to be used for different purposes in the aerodynamics field.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3