New Actuator Disk Model for the Analysis of Wind Turbines Wake Interaction with the Ground

Author:

Abstract

Wake models based on Actuator Disk theory are usually applied to optimize the wind farm layouts and improve their overall efficiency and expected AEP. Despite the effectiveness of the existing models, most Actuator Disk approaches are based on the flow axisymmetric assumption, without considering the ground effect on the wake behavior. However, it has been shown that the mast’s height, or distance from the wind turbine to the ground, has an influence on the wake expansion on both hub’s side and at downstream of the wind turbine. Therefore, in this study, a hybrid CFD-BEM-Actuator Disk approach is developed to address the lack of the existing models. In the proposed model, the 3D wind rotor is modeled by a set of blade elements. Then, the local lift and drag forces acting on each blade element are calculated using BEM theory and incorporated into the momentum equation. This BEM-AD model is implemented in a User Defined Function (UDF) that is loaded into the CFD software. Thereby, ground effects are considered to be a wall boundary and defining a wind boundary layer profile at the inlet boundary, which describes the Atmospheric Boundary Layer (ABL). For the validation of this new Actuator Disk model, an enhanced experimental study is conducted at the Dynfluid Laboratory wind tunnel (ENSAM School Paris Tech). The Particle Image Velocimetry (PIV) measurements are used for the experimental wake explorations applied to a miniature two-bladed wind turbine. The wake developments are analyzed at two different hub heights ratio, h/D = 0.7 and 1.0 (where h is the hub height, and D is the wind rotor diameter). The analysis of the outcomes showed that the numerical simulations are in good correlation with the experimental measurements of the ENSAM wind tunnel. The numerical results show that for h/D=0.7, the upper half of the rotor operates within the boundary layer whereas the lower tip vortices are mainly developed in the horizontal direction with lower intensity compared to the upper tip vortices. This effect was not observed for the case h/D=1.0 where the rotor operates outside of the boundary layer; however, the wake centerline is upward deflected at about 0.3D. The main conclusion is that a distance above 7D must be observed between wind turbines to optimize the wind farm performance and over 1D hub height be required to limit the influence of the ground boundary layer effect.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wind wake analysis under thermal stratification conditions;2023 14th International Renewable Energy Congress (IREC);2023-12-16

2. Application of an Open-Source OpenFoam for Fluid-Structure Interaction Analysis of the Horizontal-Axis Wind Turbine Blade;Journal of Applied Fluid Mechanics;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3