Numerical Investigation on Separation Efficiency of a Novel Hybrid Engine Air-Particle Separator

Author:

Abstract

This paper proposes a novel design for a hybrid engine air-particle separator filter (HEAPS) that combines the vortex tube separator (VTS) with the inertial particle separator (IPS) to enhance separation efficiency. Helicopters often operate in harsh environments, such as deserts, and landing on unprepared runways poses a severe risk to turboshaft engines due to the ingestion of dust and sand. This can result in significant damage to the engine's rotating components, impacting its life, reliability, and performance. To protect the engine from erosion and damage, an engine air particle separator system (EAPS) is installed in the engine inlet. In this study, a comparative numerical simulation was conducted between the hybrid filter and the VTS using the commercial software ANSYS Fluent. The Reynolds-averaged Navier–Stokes equations (RANS) were used to simulate incompressible turbulent flow, and the trajectory of particles was tracked using the Discrete Phase Model (DPM). Particle trajectories and separation efficiency were analyzed for different particle sizes, inlet velocities, and bypass mass flow ratios between the scavenge channel and the core engine channel. The results show that the hybrid design provides excellent separation efficiency, with a recovery efficiency of over 97%.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3