Abstract
The mixing of oil and gas forms the foundation of deep-sea oil and gas extraction and transportation. However, traditional conveying equipment has low efficiency and high failure rates. In this study, a spiral axial flow gas and liquid multiphase pump was used as the base model. The Eulerian multiphase flow model and RNG turbulence model were used for numerical simulations to analyze the internal flow field of the multiphase pump. A modification scheme was proposed to twist the airfoil shape and create a twisted vane. The twisted blade with the center of the hub-side flange chord length as the twisting center was twisted in the counterclockwise direction to help reduce the relative volume of gas in the flow channel. When the twisted vane with the hub-side airfoil type trailing edge point as the twisting center was twisted in the suction side direction, it helped to accelerate the movement of the gas-liquid mixture at the trailing edge of the back of the vane and further reduced the low velocity zone at the back of the vane. When the twist center is located at the hub side wing type trailing edge point of the twist vane, the twist degree is 0.214. This results in the maximum head and efficiency of the pump, improves gas phase aggregation phenomenon, and enhances the performance of the multiphase pump.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献