Effects of Volute Structure on Energy Performance and Rotor Operational Stability of Molten Salt Pumps

Author:

Abstract

A double-volute molten salt pump with two outlet pipes is proposed based on the original pump model. A numerical approach coupling finite element analysis and computational fluid dynamics (CFD) is implemented to investigate the operational stability and energy performance of two molten salt centrifugal pumps for high-temperature molten salt. The entropy production of the single-volute and double-volute molten salt pumps is investigated. The effects of the volute structures on the mechanical behavior of the impeller and shaft are considered. According to the findings, the local entropy production in the molten salt pump is dominated by the local pulsating entropy production (Spro-T), with the double-volute scheme achieving reduced energy loss. A visualization of the flow field and the local entropy production rate (LEPR) distributions indicate that the LEPR is positively correlated with the complexity of the flow, and higher levels of turbulence intensity lead to greater LEPR. The double-volute scheme enhances the complexity of the flow in the impeller, resulting in an increase in the LEPR compared with the single-volute design. However, the LEPR in the whole double-volute molten salt pump is reduced compared with the single-volute design. It is discovered that the double-volute molten salt pump experiences a less radial hydraulic force. Although the double-volute design has a slightly higher maximum equivalent stress on the impeller than the single-volute scheme, the rotor deformation is significantly less. In general, the double-volute scheme reduces energy loss and ensures better structural stability.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3