Steady-State Characteristics of Spiral Groove Floating Ring Gas-film Seal Considering Temperature-Viscosity Effect

Author:

Abstract

During the operation of the floating ring gas film seal, a certain amount of heat is generated inside the seal gap, giving rise to thermal deformation of the seal rings, and further leading to operation unstable and increased leakage rate. Based on the gas lubrication theory, the control equations of gas pressure and gas film thickness of the floating ring gas film seal are obtained. And the energy and temperature-viscosity equation are also introduced. The above equations were solved by the finite difference method and their correctness was verified by experiments. The variation of opening force, leakage rate, friction force, and gas film temperature rise with rotating speed, inlet pressure, and eccentricity were analyzed. The results reveal that, for leakage rate, the difference between the modeled and tested values is only 2.94% at high speeds, taking into account the influence of the temperature-viscosity effect. The experiment substantiates that the temperature-viscosity effect model is scientifically valid. Operation parameters also have different effects on sealing performance. Compared with isothermal flow, the pressure distribution in the gas film flow field will change significantly with increasing gas temperature, which means that the temperature-viscosity effect cannot be neglected in the flow field calculation. These results provide grounds for further study of the thermoelastic effect of air film seal of floating ring and have important engineering significance.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3