Airfoil Shape Optimization of a Horizontal Axis Wind Turbine Blade using a Discrete Adjoint Solver

Author:

Abstract

In this study, airfoil shape optimization of a wind turbine blade is performed using the ANSYS Fluent Adjoint Solver. The aim of this optimization process is to increase the wind turbine output power, and the objective function is to maximize the airfoil lift to drag ratio (Cl/CD ). This study is applied to the NREL phase VI wind turbine, therefore, the S809 airfoil is used as a reference profile. First, for the validation of the applied numerical model, steady-state simulations are carried out for the S809 airfoil at various angles of attack. Then, the optimization is performed with the airfoil set at a fixed angle of attack, , considering three Reynolds numbers, Re =3 105,4.8 105 and 106. Next, computations are performed for the fluid flow around the optimized airfoils at angles of attack AOA= 6.1° ranging from 0° to 20°. The results show that (i) the lift to drag ratios of the optimized airfoils are significantly improved compared to the baseline S809 airfoil, (ii) this improvement is sensitive to the Reynolds number, and (iii) the Cl/CD ratios are also improved for another angle of attack values. Thereafter, the optimized airfoils are used for the design of the NREL Phase VI blade and the aerodynamic performances of this new wind turbine are assessed using the open-source code QBlade. These latter results indicate that when the blades are designed with the optimized airfoils, the wind turbine aerodynamic performances increase significantly. Indeed, at a wind speed of 10 m/s, the power output of the wind turbine is improved by about 38% compared to that of the original turbine.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3