Comparative Study of the Performance Improvement of an Axial Compressor with a Micro-Vortex Generator and a Suction Slot

Author:

Abstract

Flow control methods have been gradually applied to improve the flow field characteristics of axial compressors. However, most of the current research is focused on the cascade, and few studies have taken a compressor as the research object. Therefore, a 3.5-stage transonic axial compressor is adopted to explore the characteristics of different flow control schemes. The effects of the micro-vortex generator (MVG), segmented boundary layer suction (BLS), and combined technology (COM) on the MVG and BLS are compared by the numerical simulation method. The research results are summarized as follows. The excessive accumulated low-energy fluid in the blade passage induces the occurrence of a corner stall in the last stage stator of an axial compressor. At this time, the compressor can still work, but the performance has accelerated deterioration. The flow characteristics are effectively improved when the MVG is introduced, the stall margin improvement ΔSM and the peak efficiency improvement Δηe of the last stage are 2.1% and 1.02%, respectively. Moreover, the BLS shows advantages in removing the three-dimensional reverse flow and decreasing the total pressure loss compared with the MVG, the ΔSM of the last stage is 2.69%, and the Δηe is 1.83%. When the combined technology is applied, it shows a significant advantage in delaying the occurrence of a corner stall, and the stall margin of the last stage is improved by 2.71%. Based on a quantitative analysis method using loss sources, the three flow control schemes show significant advantages in reducing the secondary flow loss sources and the wake loss sources. Above all, the BLS shows significant advantages in reducing the total pressure loss, and the COM shows an advantage in expanding the stable operating range. The research results will provide a reference for studies of flow control methods related to reducing flow losses and widening stability margins.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3