Experimental Study of Secondary Flow in Narrow and Sharp Open-Channel Bends

Author:

Abstract

Secondary flow is a prominent feature of channel bends; it alters the streamwise velocity and bed shear stress distributions. Experiments were conducted to investigate the complex pattern of secondary flow in a narrow and sharp open-channel bend and the underlying mechanism of generation of multiple circulation cells. Compared with the moderate bends, the sharp bends are characteristic of multiple circulation cells from the 90° section. In addition to the curvature-induced circulation cell (S1) and turbulence-induced counter-rotation circulation cell (C1) near the outer bank, another circulation cell (S2) was observed near the inner bank and was attributed to flow separation. A term-by-term analysis of the vorticity equations indicates that the centrifugal term favours S1 and C1 while opposing S2. The turbulence-related term accounts for the formation of C1 and S2. The advective transport term redistributes vorticity and maintains the existence of S2. The dependence of secondary flow structure on Reynolds number and aspect ratio was also explored. With an increase in the Reynolds number from 23000 to 37000, both the strength and size of C1 are reduced by 50%, whereas the size of S2 increases by 20%, and its strength slightly decreases. With a decrease in the aspect ratio from 3.3 to 2, the strengths of S1, S2, and C1 are doubled, and the sizes of C1 and S2 increase by 90% and 20%, respectively.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling Multiphase Debris Floods Down Straight and Meandering Channels;Journal of Applied Fluid Mechanics;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3