Measuring the Taylor Bubble Length in a Two-Phase Flow using an Electrical Resistance Sensor and a High-Speed Camera

Author:

Abstract

The present research aims to investigate the two-phase air/water flow in a vertical pipe using an electrical resistance sensor and a high-speed camera. An electrical resistance sensor is designed and embedded in the inner wall of the tube. A flow pattern map is drawn at the height of 270 cm from the testbed inlet for 320 different phase velocities using a high-speed camera. By measuring the output voltage of the electrical resistance sensor and using the Maxwell relation, the volume fraction in bubbly and slug flow regimes are calculated for different phase velocities. The volume fraction values detected from the output signal of the electrical resistance sensor are compared with the results obtained from the high-speed camera images. The width of the output signal from the electrical resistance sensor indicates the length of the Taylor bubble. The output signal width is compared to the obtained Taylor bubble length from high-speed camera images, for several different velocities of the phases. It is noticed that at a constant velocity of the phases, the output signal width from the sensor is linearly related to the length of the Taylor bubble. The variations of the output signal width are plotted in terms of the ratio of the Taylor bubble length to the summation of air and water superficial velocities. By linear fitting of the available data, a novel equation is presented to calculate the Taylor bubble length in terms of the signal output from the electrical resistance sensor and the total superficial velocity of the phases.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3