Assessment of Turbulence Models for Unsteady Separated Flows Past an Oscillating NACA 0015 Airfoil in Deep Stall

Author:

Abstract

This paper provides 2D Computational Fluid Dynamics (CFD) investigations, using OpenFOAM package, of the unsteady separated fully turbulent flows past a NACA 0015 airfoil undergoing sinusoidal pitching motion about its quarter-chord axis in deep stall regime at a reduced frequency of 0.1, a free stream Mach number of 0.278, and at a Reynolds number, based on the airfoil chord length, , of . First, eighteen 2D steady-state computations coupled with the SST model were carried out at various angles of attack to investigate the static stall. Then, the 2D Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations of the flow around the oscillating airfoil about its quarter-chord axis were carried out. Three eddy viscosity turbulence models, namely the Spalart-Allmaras, Launder-Sharma , and SST were considered for turbulence closure. The results are compared with the experimental data where the boundary layer has been tripped at the airfoil’s leading-edge. The findings suggest that the SST performs best among the other two models to predict the unsteady aerodynamic forces and the main flow features characteristic of the deep stall regime. The influence of moving the pitching axis downstream at mid chord was also investigated using URANS simulations coupled with the SST model. It was found that this induces higher peaks in the nose-down pitching moment and delays the stall onset. However, the qualitative behavior of the unsteady flow in post-stall remains unchanged. The details of the flow development associated with dynamic stall were discussed

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3