Numerical Investigation of the Vortex Breaker for A Dynamic Separator using Computational Fluid Dynamics

Author:

Abstract

The separation efficiency and pressure drop of the dynamic separator of cement particles can be affected by many factors, like structural type, geometric parameters, and operating characteristics. In this paper, CFD modeling is applied to investigate the fluid flow behavior and the efficiency of the industrial dynamic separator with different heights of the inner cone called the vortex breaker. Simulations are based on the RSM and the DPM models. A CFD comparison of the original design and new designs has been performed. The simulation results showed that the fluid flow inside the industrial air separator is greatly dependent on the height of the vortex breaker. Interesting phenomena were observed by the numerical simulations and the results revealed that an increase in the height of the vortex breaker up to three-quarters of the magnitude of the fine powder outlet duct can improve the performances of particle separation not only by reducing 29% the cut size, and by 40% the bypassing of fine particles but also by increasing 30% the separation sharpness while keeping the pressure drop substantially unchanged.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3