Experimental Investigation of the Exhaust Device of Turbocharger for Marine Engines

Author:

Abstract

In order to reduce the temperature in the marine engine cabin, improve the working environment of the staff and meet the economy and emission requirements, the cooling system of the engine was experimentally investigated in the present study. In this regard, water cooling and air-cooling schemes were studied and the main indicators including engine torque, smoke-emission, and exhaust temperature were analyzed. The obtained results indicate that the highest torque can be obtained from the air-cooling turbine case and air-cooling exhaust pipe. As the applied torque decreases, the outlet smoke first decreases then increases and decreases finally. Moreover, it is found that the water-cooling turbine case and water-cooling exhaust pipe increase the smoke. When the turbocharger is equipped with a water-cooling turbine case and water-cooling exhaust pipe, the higher the engine torque, the higher the turbine exhaust temperature and oil tank temperature, and the greater the reduction of the exhaust temperature. The engine torque is in direct proportion to the fuel consumption. The greater the torque, the higher the engine speed and the greater the fuel consumption. The engine torque is inversely proportional to the fuel consumption rate. The greater the torque, the smaller the fuel consumption rate. In cases with water cooling exhaust devices at 110% loading speed, the temperature after the intercooler is higher than that with the air-cooling exhaust device. After the intercooler, the pressure increases as the applied torque increases, and a higher-pressure ratio can be obtained from the air-cooling exhaust device. The higher the engine torque, the higher the temperature of the turbine exhaust, the higher the outlet temperature of the circulating cooling water, and the higher the temperature in the cabin. It was concluded that the exhaust device of the air-cooling turbine case and water-cooling exhaust pipe can reduce the temperature in the engine parts by up to 2℃, thereby improving the working environment of the cabin staff, economic performance, and the emission index.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3