Vertical and Spanwise Wake Flow Structures of a Single Spire over Smooth Wall Surface in a Wind Tunnel

Author:

Abstract

The aerodynamic interaction between the wake flow structure behind a single spire with a smooth wall boundary layer at a long streamwise location was observed in a wind tunnel experiment. The application of a single spire is intended to generate a wake flow similar to the one generated behind a skyscraper. A quarter elliptic wedge spire was used and a long streamwise distance of up to 26 times the spire’s height was adopted to ensure the development of the boundary layer and the wake recovery. To grasp how the smooth wall boundary layer interacts with the wake as well as how the wake recovers downstream, vertical and lateral velocity profiles were examined. Despite only one spire being utilized, it was found that the role of the spire as a vortex generator was confirmed the boundary layer height in the with-spire case increased compared to that of the without-spire case. Moreover, the velocity deficit recovery process was observed vertically and streamwise. However, within the boundary layer, the recovery rate in the streamwise direction was lower compared to the above it. This finding indicates that within the boundary, the turbulence generated can sustain the wake caused by the spire, reducing the recovery rate. Based on the current lateral velocity analysis, the final streamwise distance required by the wake to fully recover could not be predicted due to the large velocity deviation of 2.15% at the end of the streamwise distance.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3