Experimental and Computational Study on Effect of Vanes on Heat Transfer and Flow Structure of Swirling Impinging Jet

Author:

Illyas S. M., ,MuthuManokar A.,Kabeel A. E.

Abstract

The study focuses on heat transfer performance and flow structure associated with swirling jet on a flat target surface. The analysis is carried out with helicoid inserts of swirl number S = 1.3 by varying the number of vanes with Reynolds number between 11200 and 35600. The comparison of swirling jet with circular jet is carried out on its heat transfer performance. The heat transfer and flow structure are visualized using thermo-chromic liquid crystal sheet and oil film technique respectively. The numerical simulation is also performed at Re = 24700 for H/D distance between 1 and 4 using computational fluid dynamics. The heat transfer results reveal that the presence of axial recirculation zone at Re = 29800 and 35600 for the triple helicoid affects the uniformity of heat transfer distribution at 0 < X/D < 1.5 at H/D = 3. The axial component of velocity with respect to swirling jet is less than zero in the stagnation area and it increases at 0.57 < r/D < 0.97 for single vane and 0.63 < r/D < 0.97 for double and triple vanes. While the steep increase in tangential velocity of the triple vane jet is apparent at 0 < r/D < 0.5 at H/D = 2 and 3, the maximum value of point radially shifts inward towards the jet. The location of maximum turbulent kinetic energy approaching the surface at about r/D = 0.9 - 1.2 which characterizes the swirling jet at H/D = 2.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3