Effect of Lobe Count and Lobe Length of Corrugated Lobed Nozzle on Subsonic Flow Characteristics

Author:

Roy V. P.,Kriparaj K. G.,Tide P. S.,Biju N.

Abstract

The corrugated lobed nozzle is an emerging research topic in jet flow dynamics, and little investigation has been conducted on its effect on flow characteristics. Thus, in this study, the effects of lobe count and lobe length of corrugated lobed nozzles on subsonic jet characteristics were experimentally investigated by analyzing the velocity profiles of the jets emanating from the nozzles. The Pitot tube readings were obtained by varying the count (4 ≤ N ≤ 8) and length (10 mm ≤ L ≤ 20 mm) of corrugated lobes. These measurements were then compared with the experimental readings obtained for a baseline circular nozzle. The nozzle pressure ratio (NPR) and exit nozzle area were kept identical at 1.5 and 600 mm2, respectively, for all nozzle configurations. The most striking observation was the ‘W’-shaped radial velocity profile of the corrugated nozzle, which differed from the ‘Top hat’ profile of the baseline circular nozzle. Additionally, the length of the potential central region of the corrugated nozzle was always shorter than that of the baseline circular nozzle, indicating the early occurrence of turbulence in the former. It was found that the lobe length had a meagre effect on the velocity variation in the jet issuing from the corrugated nozzle, whereas the lobe count had a significant effect on the velocity profile. However, as the lobe count increased, the velocity profile of the corrugated nozzle gradually resembled that of the circular nozzle. The findings of this study would be beneficial for selecting a proper lobe count and lobe length while designing and implementing a corrugated lobed nozzle.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3