Assessment of LULC changes in Western Himalayan Mountain Landscape: A Case of Sainj River Valley, Himachal Pradesh (India)

Author:

Vatsal Aarti1ORCID,Brar Karanjot Kaur1ORCID,Vivek Vivek1ORCID,Irfan Mohammad1ORCID

Affiliation:

1. 1 Department of Geography, Panjab University, Chandigarh, India

Abstract

Landscape is multifaceted and it is the result of human interactions with their surrounding environment. More than half of the population of the world is dependent on the mountains for their ecosystem services which are now exhibiting signs of human pressure in the form of environment degradation. Himalayan Mountains are also fast succumbing to human greed for land and resources, resulting in the changes in their landscape. In this work we evaluate land use/land cover (LULC) changes in the biodiversity hotspot within a particular region located in the Western Himalaya. Sainj River Valley is in Kullu district of Himachal Pradesh. This study area is one of the major tributary of river Beas with an altitudinal range between 900 to 5800 meters, covering an area of 748.33 km2 and supporting a population over 25000 persons. For this study, we use GIS tools and remote sensing imagery of LANDSAT 5 and LANDSAT 8 for the year 1989 and 2020 respectively. Image classification has been done by using supervised classification with Maximum Likelihood Classifier (MLC) where seven different classes are identified. The result reveals significant increase in land use classes such as agriculture (34.19%); settlements (89.42%), barren land (33.54%), and pasture land (19.01%) while noticeable decrease has been observed in snow cover (60%) and forest land (14.18%). A considerable change in barren land to pasture and forest land reflects the biodiversity conservation and management efforts of the park administration.

Publisher

Enviro Research Publishers

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3