Classification of Tomato Leaf Disease Using a Custom Convolutional Neural Network

Author:

Kokate Jayesh K.1ORCID,Kumar Sunil1,G. Kulkarni Anant2ORCID

Affiliation:

1. 1Electronics and Communication Department, Kalinga University, Raipur, India.

2. 2Electronics and Telecommunication Department, Siddhivinayak Technical Campus, Shegaon, India.

Abstract

A plant's genetic potential for crop production can only be realised if the plant is healthy. Infected plants produce less than their genetic potential when they are unhealthy and exposed to infection-causing agents of any kind. A disease can have an impact on a plant's metabolism. Manual checking of plant health is not feasible for anytime. Accurately identifying the disease as soon as it first manifests on the plant is crucial for controlling it in farms. Thus, taking the proper action to stop further crop and yield damage will depend heavily on an automated method of disease identification and precise disease relegation. This paper presents a convolutional neural network (CNN) model for diagnosing tomato leaf diseases. The findings are presented with an emphasis on accuracy as well as loss. About, 14240 numbers of tomato leaf image data representing nine distinct disease classes were utilized to train the model. On average, this classification was found to be 95.53 percent accurate.

Publisher

Enviro Research Publishers

Subject

Pharmacology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3