Recent progress in doped TiO2Photocatalysis and Hybrid Advanced Oxidation Processes for Organic Pollutant Removalfrom Wastewater

Author:

Bhatti Darshana Tushar1ORCID,Parikh Sachin Prakashbhai1ORCID

Affiliation:

1. 1Chemical Engineering Department, VVP Engineering College affiliated to Gujarat Technological University, Rajkot, Gujarat India .

Abstract

Hybrid advanced oxidation processes (HAPOs) for the removal of non-biodegradable organics from wastewater have been studied in recent literature. With the increase in industrial development, the quantity of wastewater generated from these industries also organic wastewater produced by industrial manufacturing has posed threats to the environment.AOP’s are one of the promising advanced technologies for mineralization of organics present in wastewater. Hybrid advanced oxidation process based on the ozonation, sonolysis, Photo-Fenton reagents and electrochemical method, has greater potential for complete mineralization of recalcitrantorganics. This review article includes recent progress in the research and application of TiO2 photocatalysis for the removal of nonbiodegradable organic pollutants present in water. It will provide a quick reference for various hybrid AOPs systems and their effectiveness. This review article provides quick insights into (1) hybrid AOP for treatment of various industrial effluents or model effluents, (2) work done on doped/co-doped photocatalyst as heterogeneous catalysts (3) study of parameters affecting the photocatalysis to enhance complete oxidation of organics present in wastewater. A mechanistic investigation of hybrid advanced oxidation processes with combinations of sonolysis and Fenton process coupled with UV, adsorption and addition of biochar has been discussed.

Publisher

Enviro Research Publishers

Subject

General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3