Determination of Air Quality Life Index (Aqli) in Medinipur City of West Bengal(India) During 2019 To 2020 : A contextual Study

Author:

Rana Samiran1ORCID

Affiliation:

1. 1Department of Physiology, Shri J.J.T University, Jhunjhunu, Rajasthan, India .

Abstract

The Air Quality Index (AQI) utilized in various nations doesn't plainly show how much air pollution influences the average life expectancy (LE). This study explicitly shows how much air pollutants (especially atmospheric particulate matter) reduce the average LE of an individual in a given year in a specific city. This study has determined the Air Quality Life Index (AQLI) and has shown a reduction in the average LE of each resident of Medinipur city in 2019 and 2020. The reduction in human LE due to particulate matter pollution is actually based on a pair of semi-experimental variation studies, especially in the Chinese setting, derived from the impact of coarse particles (PM10: particle size ranges between 2.5 micrometers and 10 micrometers) on the northern and southern border populace of the China Huai River. The results showed that “an additional 10 micrograms per cubic meter of PM10 exposure reduces LE by 0.64 yrs’’.1 The methodology used in this study is based on the University of Chicago Energy Policy Institute's (EPIC) epidemiological estimates that provide the most acceptable and modified equation for determining global AQLI, which uses PM2.5 to PM10 ratios due to global PM10 data unavailability and recommends that ‘additional sustainable exposure to fine particles or PM2.5 (particle size less than or equal to 2.5 micrometers) reduces LE by 0.98 years per 10 micrograms per cubic meter’ which was followed by a pair of experimental results by Chen et al. (2013) and Ebenstein et al. (2017) on the impacts of long-term PM pollution on permanent residents of both the north and south sides of the China Huai River.2 Regional or global previous fine particle (PM2.5) densities are measured at a specific resolution using an integrated geophysical-statistical method that provides the global fine particulate or PM2.5 data3 used to determine the AQLI of a country or city, although PM2.5 concentrations are considered for world atmospheric pollution because atmospheric particulate matter (PM2.5) invades the deeper structures of the respiratory tract and has a more harmful or toxic impact on humans than coarse particles (PM10).4,5 Therefore, the current annual PM2.5 data is used by the ground-based monitor of PM2.5 concentration to determine the AQLI of the respective city in this study. The results of the study have shown that the current annual concentration of PM2.5 obtained from BreezoMeter and PMS3003 at four selected stations (S1 to S4) in Medinipur city ranged from 23 to 29 µg/m³ per year and the average LE loss in Medinipur varied from 1.3 years to 1.87 years per person, which may be caused by cardiopulmonary disease and lung cancer.

Publisher

Enviro Research Publishers

Subject

General Environmental Science

Reference31 articles.

1. 1. Ebenstein A, Fan M, Greenstone M, He G, Zhou M. New evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River Policy. Proc Natl Acad Sci U S A. 2017;114(39):10384-10389. doi:10.1073/pnas.1616784114.

2. 2. Greenstone M, Fan CQ. Introducing the Air Quality Life Index. Energy Policy Inst Univ Chicago. 2018;(November):1-34.

3. 3. Van Donkelaar A, Martin R V., Brauer M, et al. Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors. Environ Sci Technol. 2016;50(7):3762-3772. doi:10.1021/acs.est.5b05833.

4. 4. Michael Greenstone; Qing (Claire) F. Air Quality life Index (AQLI). Annu Update. 2020;(July):1-21.

5. 5. Xing YF, Xu YH, Shi MH, Lian YX. The impact of PM2.5 on the human respiratory system. J Thorac Dis. 2016;8(1):E69-E74. doi:10.3978/j.issn.2072-1439.2016.01.19

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3