Investigation of the moderate toxicity of agricultural pesticides cyantraniliprole, boscalid and spiromesifen in vitro using neurotoxicity screening test

Author:

Karakayalı Emine MügeORCID,Kekeç DuyguORCID,Önal TunaORCID,Tuğlu Mehmet İbrahimORCID

Abstract

Objectives: Although industrial products used as agricultural pesticides are considered safe, they are likely to lead to chronic problems due to their long-term effects. The neurotoxicity screening test (NST) is a method based on the inhibition of neurite extension of neurons that do not not die with toxic effects. In this study, we aimed to investigate the moderate neurotoxic effects and reveal the potential dangers of agricultural pesticides in vitro using NST. Methods: Cyantraniliprole, boscalid and spiromesifen were used as agricultural pesticides on the mouse neuroblastoma cell line N2a. Neurite extension of neurons was performed by taking them into the proliferation medium followed by the differentiation medium. Cell viability and proliferation were analyzed using the MTT test. The percentage of neurite inhibition was calculated by measuring neurite outgrowth by NST. Oxidative stress was analyzed by NOS staining with h-score and apoptosis was shown using the apoptotic index in TUNEL staining. Results: Cyantraniliprole, boscalid and spiromesifen at high concentrations caused neurite inhibition, decreased proliferation and reduced the viability of cultured neurons. These agricultural pesticides were found to be significantly moderate toxic for neurons by increasing oxidative stress and apoptosis. Conclusion: We conclude neurite inhibition may be important in early recognition for detecting and preventing the neurotoxic effect of pesticides, and NST is an important in vitro test that can predict the long-term effects of neurotoxic agents. In the present study, we observed cyantraniliprole, boscalid and spiromesifen had moderate neurotoxic effects in varying degrees using NST. This means that pesticides may behave toxic even in permissible limits for chronic exposure.

Publisher

Deomed Publishing

Subject

Anatomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3