Fine-tuning machine translation quality-rating scales for new digital genres: The case of user-generated content

Author:

Candel-Mora Miguel A.ORCID

Abstract

With the active participation of users in product review platforms, online consumer-generated content, and, more specifically, user-generated reviews, have become a clear reference in purchasing decision-making processes, which sometimes exceed the impact of advertising campaigns. A common feature of most tourism review platforms is the use of machine translation (MT) systems to immediately make reviews available to users in various languages. However, the quality of the MT output of these reviews varies greatly, primarily due to the subjective and unstructured nature of this digital genre. Different studies confirm that there are no universal quality rating scales. The assessment of MT output quality usually depends on factors such as the purpose of the text or the value given to the immediacy of the translation. New neural MT systems have been a revolution in the quality increase of the translated output; however, new lines of research are opening up to verify whether the quality of this new paradigm of MT can be assessed with the existing scales, mainly from previous rule-based systems and statistical translation, or whether it is necessary to develop new quality metrics specifically for these new intelligent systems. On the other hand, one of the questions that remain to be resolved in this new context of neural MT is whether the use of large amounts of textual data in the training of these systems is as effective as the use of less data but of higher quality and better-adjusted to the specialty and type of text for which it is used. Based on the hypothesis that each genre requires specific quality rating scales, this work identifies the error patterns and textual characteristics of online user reviews from a corpus-based approach analysis that will contribute to adapting quality rating scales to this specific digital genre.

Publisher

Universidad de Alicante Servicio de Publicaciones

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3