Energy Management for Internet of Things via Distributed Systems

Author:

M. Sadeeq Mohammed A.,Zeebaree Subhi

Abstract

The distributed energy system (DES) architecture is subject to confusion about renewable energy limits, primary energy supply and energy carriers' costs. For the grid to use unreliable electricity sources, the end-user's on-demand presence in the intelligent energy management context is essential. The participation of end-users could influence the management of the system and the volatility of energy prices. By delivering auxiliary services using demand side-resource to increase system reliability, robust planning, constraint control and scheduling, consumers may support grid operators. The optimized approach to managing energy resources enhances demand response to renewable energy sources integrally, controls the demand curve with load versatility as the system requires it. The opportunity to adjust/regulate the charging profile by choosing a particular device. This article discusses a literature and policy analysis that looks at the role of energy management system aggregators and the end-users participating in subsidiary systems within Smart Grid programmers and technologies. In the implementation of aggregators for energy management systems, the objective is to understand the patterns, threats, obstacles and potential obstacles.

Publisher

Interdisciplinary Publishing Academia

Subject

General Medicine

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3