Comparative Analysis for Internal Fixations of Pauwels II by Biomechanical Finite Element Method

Author:

Peng Matthew Jian-Qiao1,Ju Xiangyang2,Chen Hai-Yan3,Bo Bai1,Li XinXu4

Affiliation:

1. Orthopedics Department of 1st Affiliated Hospital, Guangzhou Medical University, China

2. Department of Clinical Physics and Bioengineering, University of Glasgow, UK

3. Orthopedics Department, HuiDong People's Hospital, HuiZhou, China

4. Traumatic Orthopedics Department, SanShui People's Hospital, China

Abstract

Purpose: A series models of surgical internal fixation for femoral neck fracture of Pauwels II will be constructed by an innovative approach of finite element so as to determine the most stable fixation by comparison of their biomechanical performance. Method: Seventeen specimens of proximal femurs scanned by computed tomography in Digital Imaging and Communications in Medicine (DICOM) format were input onto Mimics rebuilding 3D models; their stereolithography (STL) format dataset were imported into Geomagic Studio (3D Systems, Rock Hill, South Carolina) for simulative osteotomy and non-uniform rational basis spline kartograph; the generated IGS dataset were interacted by UG to fit simulative 3D-solid models; 3 sorts of internal fixators were expressed in 3D model by ProE (PTC, Boston, Connecticut) program virtually. Processed by HyperMesh (Altair, Troy, Michigan), all compartments (fracture model + internal immobilization) were assembled onto 3 systems actually as: Dynamic hip screw (DHS) / Lag screw (LS) / DHS+LS. Eventually, a numerical model of finite elemental analysis was exported to ANSYS for solution. Result: Three models of internal fixations for femoral neck fracture of Pauwels II were established and validated effectively, the stress and displacement of each internal pin were analyzed, the advantages of each surgical therapy for femoral neck fracture of Pauwels II were compared and demonstrated synthetically as: “The contact stress of 3-LS-system was checked to be the least; the interfragmentary displacement of DHS+1-LS assemblages was assessed to be the least.” Conclusion: 3-LS-system is recommended to be a clinical optimization for Pauwels II femoral neck facture, by this therapeutic fixation mechanically, breakage of fixators, or secondary fracture rarely occurs.

Publisher

International College of Surgeons

Subject

Surgery

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3