Affiliation:
1. aDivision of Medical Oncology, University of Washington, and
2. bDivision of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington;
3. cRobert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois; and
4. dHelen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.
Abstract
It is increasingly important for clinicians involved in the management of prostate cancer to understand the relevance of heritable (germline) mutations that, for select patients, affect prostate cancer risk and cancer biology, and acquired (somatic) mutations that occur in prostate cancer cells. In the advanced disease setting, mutations in homologous recombination repair genes (eg, BRCA1, BRCA2, ATM, CHEK2, PALB2) suggest candidacy for platinum chemotherapy and PARP inhibitor trials. Similarly, microsatellite instability and mismatch repair deficiency, which may arise in the setting of MLH1, MSH2, MSH6, and PMS2 mutations, suggest potential vulnerability to PD-1 inhibitors. Germline genetic testing has potential importance in the treatment and assessment of familial risk, and tumor-directed somatic sequencing may guide treatment decision-making. This review provides clinicians with knowledge of basic genetic terminology, awareness of the importance of family history of cancer (not limited to prostate cancer), contrasts between the different but potentially related objectives of germline versus somatic testing of tumor tissue, and indications for genetic counseling. Specific clinical scenarios, objectives of testing, and nature of the assays are reviewed. Germline and somatic mutations of known and potential relevance to prostate cancer are discussed in the context of treatment options, and algorithms to assist clinicians in approaching this area are proposed.
Cited by
108 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献