Impaired hemoglobin clearance by sinusoidal endothelium promotes vaso-occlusion and liver injury in sickle cell disease

Author:

Kaminski Tomasz W.,Katoch Omika,Li Ziming,Hanway Corrine B,Dubey Rikesh K,Alagbe Adekunle,Brzoska Tomasz,Zhang Hong,Sundd Prithu,Kato Gregory J.,Novelli Enrico M.,Pradhan-Sundd Tirthadipa

Abstract

Sickle cell disease (SCD) is a monogenic disorder that affects 100,000 African Americans and millions of people worldwide. Intra-erythrocytic polymerization of sickle hemoglobin (HbS) promotes erythrocyte sickling, impaired rheology, ischemia and hemolysis, leading to the development of progressive liver injury in SCD. Liver resident macrophages and monocytes are known to enable the clearance of HbS, however, the role of liver sinusoidal endothelial cells (LSECs) in HbS clearance and liver injury in SCD remains unknown. Using real-time intravital (in vivo) imaging in the mice liver as well as flow cytometric analysis and confocal imaging of primary human LSECs, we show for the first time that liver injury in SCD is associated with accumulation of HbS and iron in the LSECs, leading to LSEC senescence. Hb uptake by LSECs was mediated by micropinocytosis. Hepatic monocytes were observed to attenuate LSECsenescence by accelerating HbS clearance in the liver of SCD mice, however, this protection was impaired in P-selectin-deficient SCD mice secondary to reduced monocyte recruitment in the liver. These findings are the first to suggest that LSECs contribute to HbS clearance and HbS induced LSEC-senescence promotes progressive liver injury in SCD mice. Our results provide a novel insight into the pathogenesis of hemolysis induced chronic liver injury in SCD caused by LSEC senescence. Identifying the regulators of LSEC mediated HbS clearance may lead to new therapies to prevent the progression of liver injury in SCD.

Publisher

Ferrata Storti Foundation (Haematologica)

Subject

Hematology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3