Immune checkpoint molecule DNAM-1/CD112 axis is a novel target for NK-cell therapy in acute myeloid leukemia

Author:

Kaito Yuta,Sugimoto Emi,Nakamura Fumi,Tsukune Yutaka,Sasaki Makoto,Yui Shunsuke,Yamaguchi Hiroki,Goyama Susumu,Nannya Yasuhito,Mitani Kinuko,Tamura Hideto,Imai Yoichi

Abstract

Acute myeloid leukemia (AML) is a hematological malignancy that frequently relapses, even if remission is achieved with intensive chemotherapy. One known relapse mechanism is the escape of leukemic cells from immune surveillance. Currently, there is no effective AML immunotherapy owing to the lack of specific antigens. Here, we aimed to elucidate the association between CD155 and CD112 in AML cell lines and primary AML samples and their therapeutic response. Briefly, we generated NK-92 cell lines (NK-92) with modified DNAX-associated molecule 1 (DNAM-1) and T-cell immunoglobulin and ITIM domain (TIGIT), which are receptors of CD155 and CD112, respectively. Analysis of 200 AML cases indicated that high expression of CD112 is associated with shorter survival than low expression. NK-92 DNAM-1 exhibited enhanced cytotoxic activity against AML cell lines and primary cells derived from patients with AML. DNAM-1 induction in NK-92 cells enhances the expression of cytotoxicity-related genes, thus overcoming TIGIT inhibitory activity. Between CD155 and CD112, CD112 is an especially important target for NK cell therapy of AML. Using a xenograft model, we confirmed the enhanced antitumor effect of NK-92 DNAM-1 compared with that of NK-92 alone. We also revealed that CD112 (Nectin-2), an immune checkpoint molecule belonging to the Nectin/Nectin-like family, functions as a novel target of immunotherapy. In conclusion, the modification of the DNAM-1/CD112 axis in NK cells may be an effective novel immunotherapy for AML. Furthermore, these results suggest the potential of the expression levels of these molecules as prognostic markers in AML.

Publisher

Ferrata Storti Foundation (Haematologica)

Subject

Hematology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3