Author:
Joseph P. Loftus ,Anella Yahiaoui ,Patrick A. Brown ,Lisa M. Niswander ,Asen Bagashev ,Min Wang ,Allyson Schauf ,Stacey Tannheimer ,Sarah K. Tasian
Abstract
Survival of infants with KMT2A-rearranged (R) acute lymphoblastic leukemia (ALL) remains dismal despite intensive chemotherapy. We observed constitutive phosphorylation of spleen tyrosine kinase (SYK) and associated signaling proteins in infant ALL patient-derived xenograft (PDX) model specimens and hypothesized that the SYK inhibitor entospletinib would inhibit signaling and cell growth in vitro and leukemia proliferation in vivo. We further predicted that combined entospletinib and chemotherapy could augment anti-leukemia effects. Basal kinase signaling activation and HOXA9/MEIS1 expression differed among KMT2A-R (KMT2A-AFF1 [n=4], KMT2A-MLLT3 [n=1], KMT2A-MLLT1 [n=4]) and non-KMT2A-R [n=3] ALL specimens and stratified by genetic subgroup. Incubation of KMT2A-R ALL cells in vitro with entospletinib inhibited methylcellulose colony formation and SYK pathway signaling in a dose-dependent manner. In vivo inhibition of leukemia proliferation with entospletinib monotherapy was observed in RAS-wild-type KMT2A-AFF1, KMT2A-MLLT3, and KMT2A-MLLT1 ALL PDX models with enhanced activity in combination with vincristine chemotherapy in several models. Surprisingly, entospletinib did not decrease leukemia burden in two KMT2A-AFF1 PDX models with NRAS/ or KRAS mutations, suggesting potential RAS-mediated resistance to SYK inhibition. As hypothesized, superior inhibition of ALL proliferation was observed in KMT2A-AFF1 PDX models treated with entospletinib and the MEK inhibitor selumetinib versus vehicle or inhibitor monotherapies (p
Publisher
Ferrata Storti Foundation (Haematologica)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献