Simultaneous inhibition of Sirtuin 3 and cholesterol homeostasis targets acute myeloid leukemia stem cells by perturbing fatty acid β-oxidation and inducing lipotoxicity

Author:

O’Brien Cristiana,Ling Tianyi,Berman Jacob M.,Culp-Hill Rachel,Reisz Julie A.,Rondeau Vincent,Jahangiri Soheil,St-Germain Jonathan,Macwan Vinitha,Astori Audrey,Zeng Andy,Hong Jun Young,Li Meng,Yang Min,Jana Sadhan,Gamboni Fabia,Tsao Emily,Liu Weiyi,Dick John E.,Lin Hening,Melnick Ari,Tikhonova Anastasia,Arruda Andrea,Minden Mark D.,Raught Brian,D'Alessandro Angelo,Jones Courtney L.

Abstract

Outcomes for patients with acute myeloid leukemia (AML) remain poor due to the inability of current therapeutic regimens to fully eradicate disease initiating leukemia stem cells (LSCs). Previous studies have demonstrated that oxidative phosphorylation (OXPHOS) is an essential process that is targetable in LSCs. Sirtuin 3 (SIRT3), a mitochondrial deacetylase with a multi-faceted role in metabolic regulation, has been shown to regulate OXPHOS in cancer models; however, it has not yet been studied in the context of LSCs. Thus, we sought to identify if SIRT3 is important for LSC function. Using RNAi and a SIRT3 inhibitor (YC8-02), we demonstrate that SIRT3 is a critical target for the survival of primary human LSCs but is not essential for normal human hematopoietic stem and progenitor cell (HSPC) function. To elucidate the molecular mechanisms by which SIRT3 is essential in LSCs we combined transcriptomic, proteomic, and lipidomic approaches, showing that SIRT3 is important for LSC function through the regulation of fatty acid oxidation (FAO) which is required to support oxidative phosphorylation and ATP production in human LSCs. Further, we discovered two approaches to further sensitize LSCs to SIRT3 inhibition. First, we found that LSCs tolerate the toxic effects of fatty acid accumulation induced by SIRT3 inhibition by upregulating cholesterol esterification. Disruption of cholesterol homeostasis sensitizes LSCs to YC8-02 and potentiates LSC cell death. Second, SIRT3 inhibition sensitizes LSCs to BCL-2 inhibitor venetoclax. Together, these findings establish SIRT3 as a regulator of lipid metabolism and potential therapeutic target in primitive AML cells.

Publisher

Ferrata Storti Foundation (Haematologica)

Subject

Hematology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3