Shallow-depth sequencing of cell-free DNA for Hodgkin and diffuse large B-cell lymphoma (differential) diagnosis: a standardized approach with underappreciated potential

Author:

Raman Lennart,Van der Linden Malaïka,De Vriendt Ciel,Van den Broeck Bliede,Muylle Kristoff,Deeren Dries,Dedeurwaerdere Franceska,Verbeke Sofie,Dendooven Amélie,De Grove Katrien,Baert Saskia,Claes Kathleen,Menten Björn,Offner Fritz,Van Dorpe Jo

Abstract

Shallow-depth sequencing of cell-free DNA, an inexpensive and standardized approach to obtain molecular information on tumors non-invasively, has been insufficiently explored for the diagnosis of lymphoma and disease follow-up. This study collected 318 samples, including longitudinal liquid and paired solid biopsies, from a prospectively- recruited cohort of 38 Hodgkin lymphoma (HL) and 85 aggressive B-cell non-HL patients, represented by 81 diffuse large B-cell lymphoma (DLBCL) cases. Following sequencing, copy number alterations and viral read fractions were derived and analyzed. At diagnosis, liquid biopsies showed detectable copy number alterations in 84.2% of HL patients (88.6% for classical HL) and 74.1% of DLBCL patients. Of the DLBCL patients, copy number profiles between liquid-solid pairs were highly concordant (r=0.815±0.043); and, compared to tissue, HL liquid biopsies had abnormalities with higher amplitudes (P=0.010). This implies that tumor DNA is more abundant in plasma. Additionally, 39.5% of HL and 13.6% of DLBCL cases had a significantly elevated number of plasma Epstein-Barr virus DNA fragments, achieving a sensitivity of 100% compared to the current standard. A longitudinal analysis determined that, when detectable, copy number patterns were similar across (re)staging moments in refractory or relapsed patients. Further, the overall profile anomaly correlated highly with the total metabolic tumor volume (P<0.001). To conclude, as a proof of principle, we demonstrate that liquid biopsy-derived copy numbers can aid diagnosis: e.g., by differentiating HL from DLBCL, random forest modeling is represented by an area under the receiver operating characteristic curve of 0.967. This application is potentially useful when tissue is difficult to obtain or when biopsies are small and inconclusive.

Publisher

Ferrata Storti Foundation (Haematologica)

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3