Author:
Michael A. Bauer ,Cody Ashby ,Christopher Wardell ,Eileen M. Boyle ,Maria Ortiz ,Erin Flynt ,Anjan Thakurta ,Gareth Morgan ,Brian A. Walker
Abstract
Disruption of the normal splicing patterns of RNA is a major factor in the pathogenesis of a number of diseases. Increasingly research has shown the strong influence that splicing patterns can have on cancer progression. Multiple Myeloma is a molecularly heterogeneous disease classified by the presence of key translocations, gene expression profiles and mutations but the splicing patterns in MM remains largely unexplored. We take a multifaceted approach to define the extent and impact of alternative splicing in MM. We look at the spliceosome component, SF3B1, with hotspot mutations (K700E and K666T/Q) shown to result in an increase in alternative splicing in other cancers. We discovered a number of differentially spliced genes in comparison of the SF3B1 mutant and wild type samples that included, MZB1, DYNLL1, TMEM14C and splicing related genes DHX9, CLASRP, and SNRPE. We identified a broader role for abnormal splicing showing clear differences in the extent of novel splice variants in the different translocation groups. We show that a high number of novel splice loci is associated with adverse survival and an ultra-high risk group. The enumeration of patterns of alternative splicing has the potential to refine MM classification and to aid in the risk stratification of patients.
Publisher
Ferrata Storti Foundation (Haematologica)
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献