Sulfated non-anticoagulant heparin derivative modifies intracellular hemoglobin, inhibits cell sickling in vitro, and prolongs survival of sickle cell mice under hypoxia

Author:

Abdulmalik Osheiza,Darwish Noureldien H.E.,Muralidharan-Chari Vandhana,Taleb Maii Abu,Mousa Shaker A.

Abstract

Sickle cell disease (SCD) is an autosomal recessive genetic disease caused by a single point mutation, resulting in abnormal sickle hemoglobin (HbS). During hypoxia or dehydration, HbS polymerizes to form insoluble aggregates and induces sickling of red blood cells, which increases the adhesiveness of the cells, thereby altering the rheological properties of the blood, and triggers inflammatory responses, leading to hemolysis and vaso-occlusive crises. Unfractionated heparin and low-molecular weight heparins have been suggested as treatments to relieve coagulation complications in SCD. However, they are associated with bleeding complications after repeated dosing. An alternative sulfated non-anticoagulant heparin derivative (S-NACH) was previously reported to have no to low systemic anticoagulant activity and no bleeding side effects, and it interfered with P-selectin-dependent binding of sickle cells to endothelial cells, with concomitant decrease in the levels of adhesion biomarkers in SCD mice. S-NACH has been further engineered and structurally enhanced to bind with and modify HbS to inhibit sickling directly, thus employing a multimodal approach. Here, we show that S-NACH can: (i) directly engage in Schiff-base reactions with HbS to decrease red blood cell sickling under both normoxia and hypoxia in vitro, (ii) prolong the survival of SCD mice under hypoxia, and (iii) regulate the altered steady state levels of pro- and anti-inflammatory cytokines. Thus, our proof-of-concept, in vitro and in vivo preclinical studies demonstrate that the multimodal S-NACH is a highly promising candidate for development into an improved and optimized alternative to low-molecular weight heparins for the treatment of patients with SCD.

Publisher

Ferrata Storti Foundation (Haematologica)

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3